Ground-Water Baseflow to the Upper Mississippi River Upstream of the Minneapolis-St. Paul Area, Minnesota During July 1988

By G.A. Payne

U.S. Geological Survey Open-File Report 94-478

Prepared in cooperation with the U.S. Army Corps of Engineers

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

For additional information write to:

Copies of this report can be purchased from:

District Chief U.S. Geological Survey 2280 Woodale Drive Mounds View, MN 55112 U.S. Geological Survey
Earth Science Information Center
Open-File Reports Section
Box 25286, MS 517
Denver Federal Center
Denver, CO 80225

Contents

Abstract				***************************************	1
Introduction	n				1
Purpose	and s	cope			1
Approac	ch and	methods			1
Gr	ound-	water baseflow			1
Lo	w-flo	w frequency analysis			3
Results of s	tudy				3
Ground-	-water	baseflow			3
Low-flo	w free	quency characteristics			4
References.					15
Appendix A	۱				16
Procedu	ires us	ed for estimating ungaged of	discharges		16
Appendix B	3				22
			Illustrations		
Figure	1.	Location of streamflow ga			•
		Mississippi River watersh	ned		2
			Tables		
Table	1.	Tributary discharges, grou	ind-water baseflow, evapor	ration	
		losses, and withdrawals, t	by subreach, for Upper Mis		4
	2.	Average discharge at U.S. Mississippi River, July 19		g stations, Upper	4
	3.	Low-flow frequency chara	acteristics for Mississippi I	River near Anoka,	
		Minnesota and Mississipp	oi River at St. Paul, climati	c years	5
	4.	Flow-duration data for Mark St. Paul, Minnesota		a and Mississippi River	6
	50	Toward many dischause is	n auhia faat nar aagand an	d marking for the	
	Ja.	Lowest mean discharge, in	ecutive days in year ending		
			[18] [10] [10] [10] [10] [10] [10] [10] [10		7
	5b.	Lowest mean discharge, in	n cubic feet per second, an	d ranking for the	
		indicated number of cons	ecutive days in year ending	TO : 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10
	6.	Tributary discharges, mur			.4
		cubic feet per second, Up	per Mississippi River, June	e and July 1988	22
			Conversion Factor		
Multiply			By	To obtain	
cubic foot p	er squ	are mile (ft ³ /mi ²)	0.01093	cubic meter per square mile	
cubic foot p			.02832	cubic meter per second	
mile (mi)			1.609	kilometer	
square mile	(mi ²)		2.590	square kilometer	

Ground-Water Baseflow to the Upper Mississippi River Upstream of the Minneapolis-St. Paul Area, Minnesota During July 1988

By Gregory A. Payne

Abstract

Ground-water baseflow to six subreaches of the Upper Mississippi River were estimated for July 1988, a period of drought. Ground-water baseflow to each subreach was estimated on the basis of streamflow gains determined from records of daily discharge at gaging stations. Streamflow gains were adjusted for estimated inflow from tributaries, municipal and industrial discharges, withdrawals, and evaporation. Low-flow frequency characteristics were computed for the Mississippi River near Anoka, Minnesota and the Mississippi River at St. Paul, Minnesota.

Introduction

The Mississippi River supplies water for the Minneapolis-St. Paul area of Minnesota (fig. 1). A drought in 1988 raised concern about the need for supplemental releases of water from reservoirs in the Mississippi River headwaters. The U.S. Army Corps of Engineers (USCOE) and the Minnesota Environmental Quality Board (EQB) have undertaken a study to develop a methodology that can be used to estimate the timing and volume of releases from the Headwaters Reservoirs necessary to support minimum flows of the Mississippi River in the Minneapolis-St. Paul area. One of the needs identified by the USCOE-EQB is quantification of ground-water contribution to the Upper Mississippi River during periods of baseflow. The U.S. Geological Survey (USGS) was requested to assist the USCOE-EQB study by (1) estimating the ground-water baseflow by subreach to the Mississippi River during July 1988, and (2) computing updated low-flow frequency statistics for the Mississippi River near Anoka and the Mississippi River at St. Paul.

Purpose and Scope

This report presents the results of estimates of ground-water gains and losses in six subreaches of the Mississippi River from the headwaters reservoirs to Anoka, Minnesota during July 1988 and lists low-flow statistics for the Mississippi River near Anoka for 1933-93 and Mississippi River at St. Paul, Minnesota for 1895, 1897, 1901-05, and 1907-93.

Approach and Methods

The scope of work for this investigation identified two primary objectives (1) determination of baseflow discharge to the Mississippi River, and (2) computation of low-flow frequency characteristics for the Mississippi River near the Minneapolis-St. Paul area. An approach and method was developed to address each of the objectives.

Ground-water baseflow

The study reach, which extends from the Mississippi River headwaters reservoirs downstream to Anoka in the Minneapolis-St. Paul area, was divided into six subreaches (fig. 1). A USGS continuous-record streamflow gaging station is located at the upstream and downstream end of each subreach. Distance in river miles for each subreach was determined from data published in the USCOE users manual for the River Emergency Management Model (U.S. Army Corps of Engineers, 1993). Daily stream discharge records for the gaging stations during July 1988 were used to determine the gain or loss of discharge within each subreach. Inflows from tributary streams and municipal and industrial discharges, both gaged and ungaged, were subtracted from the gain in each reach. Municipal and industrial withdrawals from the Mississippi River and estimated evaporative losses were added to the gain in each reach. The resulting stream discharge was considered to be the ground-water baseflow to the Mississippi River main channel within each subreach.

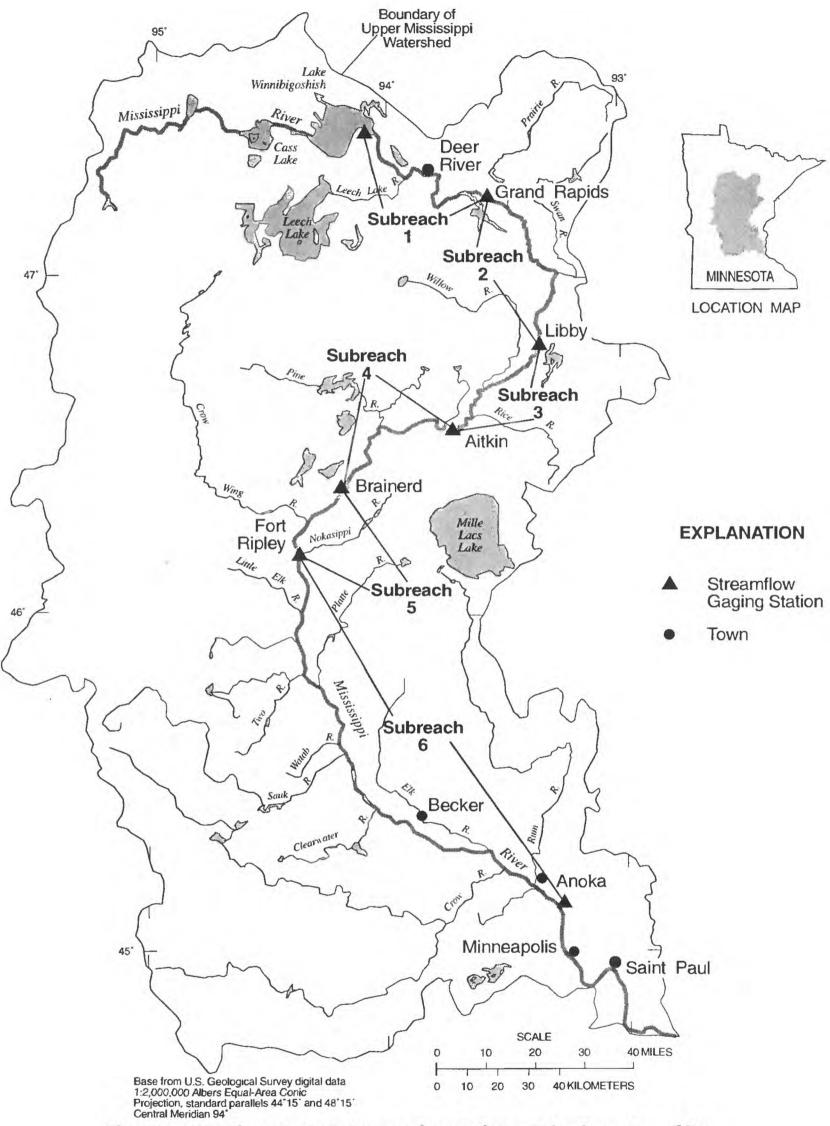


Figure 1.--Location of streamflow gaging stations and subreaches of the Upper Mississippi River watershed.

The following equation shows the calculation procedure:

(DSGAGE - USGAGE) - (INFLOWS) + (WITHDRAWALS) + (EVAP) = (GRNDWTR)

where,

DSGAGE = Discharge of the Mississippi River at gaging station at downstream end of subreach.

USGAGE = Discharge of the Mississippi River at gaging station at upstream end of subreach.

INFLOWS = Discharges for tributary, municipal, and industrial inflows in subreach.

WITHDRAWALS = Municipal and industrial withdrawals in subreach.

EVAP = Water evaporated from the surface of the Mississippi River.

GRNDWTR= Ground-water baseflow to the main channel of the Mississippi River.

Daily stream discharges for gaged tributaries were obtained from USGS records (Gunard and others 1990). Daily stream discharges for ungaged tributaries were estimated from periodic current-meter measurements made in ungaged tributary streams during May through August 1988. Characteristics of stream discharge during two previous low-flow periods (1976 and 1980) were also used for estimating discharge at some of the ungaged tributaries (U.S. Geological Survey 1977 and 1981). Stream discharges from the current-meter measurements were plotted by date on semi-log scale graphs and a smooth recession curve was drawn through the plotted points. Discharges for each day in July were determined from the curve. Each daily discharge was divided by the drainage area of the stream to obtain a cubic feet per square mile (ft³/mi²) daily discharge value. Drainage areas were obtained from USGS files, listings of drainage areas provided by the Minnesota Department of Natural Resources (MDNR) (Dana Dostert, Minnesota Department of Natural Resources, written communication, 1994), and by planimetering watershed boundaries drawn on USGS 7.5-minute topographic maps. Some of the periodic discharge measurements were made at locations other than the point where the tributary is confluent with the Mississippi River. The discharge at the mouth of those tributaries was estimated by using the ft³/mi² values. Total drainage area at the mouth of those tributaries was multiplied by the daily ft³/mi² value to obtain a daily discharge at the mouth. Discharges for ungaged tributaries for which no current-meter measurements had been obtained during May through August were estimated by using the daily ft³/mi² values from a

tributary in an adjacent or nearby watershed. The procedures used to estimate daily discharges at the mouth of each ungaged tributary are described in appendix A.

Municipal and industrial discharges were determined from data reported by the U.S. Army Corps of Engineers (1990). Evaporation from surface waters was estimated from evaporation rates measured at Williams Lake near Akeley, Minnesota (Sturrock and others, 1992) and from pan-evaporation measurements made by MDNR at Becker, Minnesota (Mark Rodney, U.S. Army Corps of Engineers, oral commun., 1994)

Low-flow frequency analysis

Low-flow frequency characteristics for the Mississippi River near Anoka and the Mississippi River at St. Paul were computed from continuous-record streamflow data maintained in the USGS Water-Data Storage and Retrieval System (WATSTORE; Hutchinson, 1975). Frequency characteristics were determined using a Log-Pearson type III frequencydistribution computation program in WATSTORE. The 1, 7, 14, and 30 day low-flow series were computed based on climatic years (April 1-March 31). Streamflow data from 1933 through 93 were analyzed for the Mississippi River near Anoka. Streamflow data from 1895, 1897, 1901-05, and 1907-93 were analyzed for the Mississippi River at St. Paul. Flow-duration data were computed based on water years (October 1-September 30) 1932-93 for the Mississippi River near Anoka, and 1895, 1897, 1901-05, and 1907-93 for the Mississippi River at St. Paul.

Results of Study

The approach and methods used to investigate ground-water baseflow resulted in a determination of tributary discharge, ground-water baseflow, evaporation, withdrawals, and net streamflow increase, by subreach, to the Mississippi River upstream of the Minneapolis-St. Paul area.

The application of the USGS WATSTORE computation program to continuous-record streamflow data resulted in calculation of low-flow frequency, flow duration, and climatic-year ranking information.

Ground-Water Baseflow

Estimated ground-water baseflow to each subreach is shown in table 1. Table 1 also shows the length of each subreach and the quantity of ground-water baseflow per river mile for each subreach. Discharges for tributaries,

Table 1.--Tributary discharges, ground-water baseflow, evaporation losses, and withdrawals, by subreach,

Upper Mississippi River, July 1988

[ft³/s, cubic feet per second]

	Length of subreach (river miles)	Discharge from tributaries ¹ (ft ³ /s)	Ground- water baseflow ft ³ /s)	Evaporation from Mississippi River (ft ³ /s)	With- drawals from Mississippi River (ft ³ /s)	Net streamflow increase (ft ³ /s)	Net streamflow increase per river mile (ft ³ /s)	Ground- water baseflow per river mile (ft ³ /s)
² Subreach 1	67.4	206	28	107	36	91	1.35	0.42
³ Subreach 2	74.9	93	41	16	0	118	1.58	.55
⁴ Subreach 3	49.7	55	0	10	0	45	.91	.0
⁵ Subreach 4	52.2	41	56	25	0	72	1.38	1.07
⁶ Subreach 5	21.2	210	84	7.9	0	286	13.5	3.96
⁷ Subreach 6	117.7	178	305	98	52	333	2.83	2.59
Total	383.1	783	514	264	88	945		

¹ Includes municipal wastewater discharges.

municipalities, and industries are listed in appendix B. Average discharges in the Upper Mississippi River at USGS gaging stations during July 1988 are shown in table 2. Net streamflow increases shown in table 1 are not consistent with data in table 2 because the data used to compute discharges for table 1 included discharges for June 28, 29, and 30, where necessary, to take into consideration travel times within subreaches.

Low-Flow Frequency Characteristics

Low-flow frequency data for the Mississippi River near Anoka and Mississippi River at St. Paul, Minnesota are shown in table 3. Flow-duration information is shown in table 4. Rankings by climatic year of lowest mean discharges for selected consecutive-day periods are shown in tables 5a and 5b.

Table 2.--Average discharge at U.S. Geological Survey gaging stations, Upper Mississippi River, July 1988

Gaging station	Discharge (cubic feet per second)
Mississippi River at Winnibigoshish Dam near Deer River, Minnesota	101
Mississippi River at Grand Rapids, Minnesota	192
Mississippi River below Sandy River, near Libby, Minnesota	313
Mississippi River at Aitkin, Minnesota	365
Mississippi River at Brainerd, Minnesota	442
Mississippi River near Fort Ripley, Minnesota	729
Mississippi River near Anoka, Minnesota	1090

² Mississippi River from U.S. Geological Survey (USGS) gaging station at Lake Winnibigoshish Dam to USGS gaging station at Grand Rapids, Minnesota.

³ Mississippi River from USGS gaging station in Grand Rapids to USGS gaging station near Libby, Minnesota.

⁴ Mississippi River from USGS gaging station near Libby to USGS gaging station at Aitkin, Minnesota.

⁵ Mississippi River from USGS gaging station at Aitkin to USGS gaging station at Brainerd, Minnesota.

⁶ Mississippi River from USGS gaging station at Brainerd to USGS gaging station near Ft. Ripley, Minnesota.

⁷ Mississippi River from USGS gaging station near Ft. Ripley to USGS gaging station near Anoka, Minnesota.

Table 3.--Low-flow frequency characteristics for Mississippi River near Anoka, Minnesota and Mississippi River at St. Paul, climatic years (April 1 - March 31)

	Annual lov	w flow for indic	ated recurrence	interval in year	s, in cubic feet	per second
_	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Mis	sissippi River n	ear Anoka, 193	3-93	
Period (consecutive days)	2 year	5 year	10 year	20 year	50 year	100 year
1 day	2110	1310	1010	808	622	519
3 day	2350	1470	1120	889	674	556
7 day	2610	1610	1210	941	697	564
14 day	2820	1720	1280	989	724	581
30 day	3030	1850	1380	1060	775	620
	N	Aississippi Rive	er at St. Paul, 18	95, 1897, 1901	-05, and 1907-9	93
1 day	2550	1580	1220	984	765	645
3 day	2710	1720	1340	1090	862	734
7 day	2920	1840	1430	1160	911	772
14 day	3070	1940	1510	1220	960	813
30 day	3230	2070	1620	1320	1040	890

Table 4.--Flow-duration data for Mississippi River near Anoka and Mississippi River at St. Paul, Minnesota

Percent of time discharge equaled or exceeded	Discharge (cubic feet per second)
Mississippi River near Anoka, 1933-93	
95	1440
90	2040
85	2540
80	2980
75	3380
70	3780
65	4190
60	4580
55	4960
50	5430
45	5940
40	6580
35	7410
30	8460
25	9760
20	11500
15	14000
10	17500
5	23600
Mississippi River at St. Paul, 1895,1897, 1901-05, and	1907-93
95	1910
90	2580
85	3110
80	3560
75	3970
70	4420
65	4910
60	5440
55	6030
50	6710
45	7590
40	8590
35	9750
30	11400
25	13600
20	16500
15	20300
10	26100
5	36500

Table 5a.--Lowest mean discharge, in cubic feet per second, and ranking for the indicated number of consecutive days in year ending March 31, Mississippi River near Anoka, Minnesota

9				Nalla		Nallin	ou days	Kank	oo days	Kank	90 days	Kank	120 days	Kalik	183 days	Rank
	913	9	186	9	1020	9	1060	9	0801	4	1140	33	1290	5	1260	4
4	840	8	880	3	626	3	896	3	1140	5	1180	5	1260	4	1280	2
	610	-	646	_	069		710		752	-	852	_	933		1010	-
7	1350	10	1400	0	1430	0	1470	0	1580	∞	1680	7	1730	7	1870	7
7	693	7	722	2	755	2	963	2	1040	7	1070	7	1090	2	1110	2
=	1410		1570	П	1610	=	1640	10	1670	6	0691	∞	1750	∞	1910	∞
29	2140	27	2230	22	2840	53	2970	53	3170	27	3250	26	3300	26	3400	70
∞	1110	7	1120	7	1140	7	1170	7	1230	9	1310	9	1450	9	1830	9
12	1470	12	1590	12	1680	13	1800	14	1910	13	1930	12	2320	13	2680	14
50	2170	28	2930	34	3630	4	3820	40	4130	38	4200	36	4370	36	2980	45
64	3440	49	3490	45	3940	48	4460	49	4570	47	4670	43	4660	40	5450	40
43	3090	44	3610	48	4140	51	4710	51	5040	50	5150	48	5170	4	5220	38
52	3930	53	4170	53	4420	52	4720	52	5180	51	5400	49	2790	46	6280	46
39	3200	45	3460	43	3530	9	3650	38	3850	36	3990	34	4290	34	5230	39
50	3560	51	3810	20	3910	47	4050	42	4510	46	5050	47	5200	45	6520	49
40	2930	39	3110	39	3270	37	3390	35	3520	34	3620	30	3730	29	3970	27
25	2070	25	2230	23	2360	23	2700	23	2800	22	2930	23	2970	21	3020	91
36	2700	36	3030	35	3260	36	3370	34	3490	33	3580	29	3700	28	4120	29
78	2030	23	2560	59	3160	34	3820	41	4140	40	4300	39	4380	37	4750	35
09	5830	09	0909	29	6290	59	6430	59	0099	59	7020	58	7780	58	0806	28
37	2730	37	3260	4	4060	20	4400	47	4450	43	4640	42	4650	39	4940	36
57	4270	57	4950	57	4970	54	5450	57	5700	54	5720	53	0009	51	6300	47

Table 5a.--Lowest mean discharge, in cubic feet per second, and ranking for the indicated number of consecutive days in year ending March 31, Mississippi River near Anoka, Minnesota--Continued

Rank	32	22	17	4	11	18		10	6	33	15	26	59	37	12	50	30		28	53	99	54	34	
183 days	4360	3510	3140	5850	2430	3260		2320	2150	4410	2780	3790	9500	5100	2580	7250	4140		4000	0981	8360	7970	4680	
Rank	31	24	19	42	10	22	_	12	6	30	15	25	 61	41	14	52	32	·	81	46	99	50	38	-
120 days	3860	3250	2860	4830	2020	2970		2150	1970	3740	2620	3250	8670	4770	2500	9300	3990		2810	5270	7160	5940	4540	
Rank	31	74	81	40	-	21		13	10	78	17	25	59	41	15	51	32		14	35	55	54	37	
90 days	3700	3080	2710	4590	1860	2880		2020	1840	3450	2550	3220	7180	4620	2430	5490	3760		2300	4080	6220	5800	4210	
Rank	32	23	18	42	11	21		14	10	28	19	26	99	45	15	41	59		12	30	57	53	31	
60 days	3420	2910	2510	4280	1750	2710		1920	1670	3230	2530	3150	2900	4500	2380	4220	3230		1910	3290	5910	5510	3400	
Rank	33	25	61	4	=	21		15	∞	31	70	22	54	46	17	30	24		13	32	99	20	27	
30 days	3240	2830	2410	4070	1650	2530		1860	1300	3180	2460	2590	5210	4350	2240	3100	2750		1790	3240	5340	4560	2910	
Rank	33	27	22	42	12	19		15	∞	32	21	20	57	43	17	31	24		14	30	55	45	25	
14 days	3150	2790	2350	3700	1610	2250		1760	1220	3120	2340	2250	5150	3750	2090	2880	2550		1750	2870	5040	3780	2620	
Rank	36	3]	24	47	13	61		14	∞	26	21	20	 54	37	1.1	32	25		15	33	55	4	27	
7 days	3090	2620	2310	3570	0091	2120		1680	1180	2450	2170	2150	4290	3090	1950	2750	2380		1720	2820	4880	3490	2460	
Rank	42	76	31	50	14	81		15	∞	20	21	24	 52	34	91	33	29		17	35	99	48	32	
3 days	3080	2140	2300	3550	1570	1780		1580	1110	0681	1940	2030	3930	2570	1580	2560	2270		1670	2660	4200	3260	2350	
Rank	47	27	33	51	17	21		81	6	22	24	56	53	31	15	35	32	•	61	38	99	48	13	
l day	3050	1870	2240	3500	1480	1700		1480	1070	1700	1750	1820	3710	2200	1400	2480	2220		1480	2600	4000	3090	1370	
Year	1955	1956	1957	1958	1959	1960		1961	1962	1963	1964	1965	9961	1967	8961	1969	1970		1971	1972	1973	1974	1975	

Table 5a.--Lowest mean discharge, in cubic feet per second, and ranking for the indicated number of consecutive days in year ending March 31, Mississippi River near Anoka, Minnesota--Continued

728 3 908 5 959 5 977 4 1040 4 1080 3 1160 1150 10 1220 9 1260 9 1390 9 1690 12 2450 16 2750 3010 46 3230 46 3870 51 4020 49 4060 43 4130 39 4280 2810 41 3260 47 3720 49 3820 46 4140 45 4810 49 4280 2810 41 3260 47 3750 44 4440 48 4690 48 4690 2810 42 3360 42 3450 38 3570 37 4470 48 4690 2810 42 3360 41 3390 42 3450 38 5880 88 6970 2880 44 2970 40 3110 38 <th>Year</th> <th>1 day</th> <th>Rank</th> <th>3 days</th> <th>Rank</th> <th>7 days</th> <th>Rank</th> <th>14 days</th> <th>Rank</th> <th>30 days</th> <th>Rank</th> <th>60 days</th> <th>Rank</th> <th>90 days</th> <th>Rank</th> <th>120 days</th> <th>Rank</th> <th>183 days</th> <th>Rank</th>	Year	1 day	Rank	3 days	Rank	7 days	Rank	14 days	Rank	30 days	Rank	60 days	Rank	90 days	Rank	120 days	Rank	183 days	Rank
1150 10 1220 9 1260 9 1390 9 1690 12 2450 16 2750 3010 46 3230 46 3870 51 4020 49 4060 43 4130 39 4280 2810 41 3260 47 3720 49 3820 46 4140 45 4810 49 5000 2810 41 3260 47 3720 49 3820 46 4140 45 4810 49 5000 2810 42 3750 44 4440 48 4600 48 4600 2890 45 3060 41 3390 42 3450 38 3570 37 4410 48 4600 48 4600 48 4600 48 4600 48 4600 48 4600 50 50 50 50 50 50 50 50 5	1977	728	3	806	5	959	5	216	4	1040	4	1080	3	1160	4	1200	3	1240	3
3010 46 3230 46 3870 51 4020 49 4060 43 4130 39 4280 2810 41 3260 47 3720 49 3820 46 4140 45 4810 49 5000 1450 16 1800 19 2010 18 2140 18 2280 18 5380 20 2790 2810 42 3380 43 3550 44 4440 48 4600 48 5000 2890 45 3080 41 3390 42 3450 38 5880 58 600 48 600 48 600 48 600 48 600 48 600 48 600 48 600 48 600 48 600 48 600 48 600 48 600 600 60 600 600 600 600 600 600 600	1978	1150	10	1220	6	1260	6	1390	6	1690	12	2450	16	2750	19	2790	17	3620	23
2810 41 3260 47 3720 49 3820 46 4140 45 4810 49 5000 1450 16 1800 19 2010 18 2140 18 2280 18 2580 20 2790 2810 42 3080 43 3510 46 3750 44 4440 48 4600 48 4500 2890 45 3080 41 3390 42 3450 38 3570 37 4470 48 4600 48 4690 2880 44 2970 40 3110 38 3180 35 3510 36 6970 38 6970 38 3510 36 3930 37 4810	6261	3010	46	3230	46	3870	51	4020	49	4060	43	4130	39	4280	38	4360	35	5460	41
1450 16 1800 19 2010 18 2140 18 2280 18 2580 20 2790 2810 42 33510 46 3750 44 4440 48 4600 48 4690 2990 45 3360 41 3390 42 3450 38 3570 37 4470 48 4600 48 4690 2990 45 3360 41 3390 42 3450 38 5880 58 6070 48 4690 4360 58 5140 58 5440 58 5880 58 6070 58 6970 2880 44 2970 40 3110 38 3180 35 3510 36 6970 5740 61 6430 61 6620 61 6860 61 7210 61 7760 44790 59 5230 30 2810	1980	2810	4	3260	47	3720	49	3820	46	4140	45	4810	49	5000	46	5300	47	5830	43
1450 16 1800 19 2010 18 2140 18 2280 18 2580 20 2790 2810 42 3750 46 3750 44 4440 48 4600 48 4690 2990 45 3060 41 3390 42 3450 38 3570 37 4470 48 4600 48 4690 4360 58 5140 58 5440 58 5880 58 6970 58 6970 2880 44 2970 40 3110 38 3180 35 3510 36 6970 5740 61 6430 61 6620 60 6860 61 7210 61 7410 1980 30 2290 30 2810 28 2960 28 3070 25 3290 842 5 855 4 885 4 993 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																			
2810 42 3080 43 3510 46 3750 44 4440 48 4600 48 4690 2990 45 3060 41 3390 42 3450 38 3570 37 4470 48 4690 4360 58 4860 58 5140 58 5880 58 6070 58 6970 2880 44 2970 40 3110 38 3180 35 3510 37 4410 540 5740 61 6430 61 6620 60 6860 61 700 60 700 710 4790 59 5230 30 2810 28 2960 28 3070 25 3290 1980 30 2590 30 2810 28 2960 28 3070 25 3290 1380 14 1560 13 1730 16 1850	1861	1450	16	1800	19	2010	18	2140	18	2280	18	2580	20	2790	20	2950	20	3490	21
2990 45 3660 41 3390 42 3450 38 3570 37 4470 44 5440 4360 58 4860 58 5140 58 5440 58 5880 58 6070 58 6970 2880 44 2970 40 3110 38 3180 35 3510 36 6970 58 6970 69 6990 61 6890 61 6890 61 6890 61 6890 61 6890 61 6890 61 6890 61 6890	1982	2810	42	3080	43	3510	46	3750	4	4440	48	4600	48	4690	44	2060	43	6400	48
4360 58 4860 58 5140 58 5440 58 5880 58 6070 58 6970 2880 44 2970 40 3110 38 3180 35 3510 36 6970 58 6970 58 6970 58 6970 58 6970 37 4810 4810 4810 58 3850 6190 60 6690 61 6860 61 7210 61 7410	1983	2990	45	3060	41	3390	42	3450	38	3570	37	4470	44	5440	50	6480	53	0998	57
2880 44 2970 40 3110 38 3180 35 3510 36 3930 37 4810 5740 61 6430 61 6620 60 6860 61 7210 61 7760 4790 59 5230 59 6190 60 6690 61 6830 60 7000 60 7410 1980 30 2290 30 2590 30 2810 28 2960 28 3070 25 3290 842 5 855 4 885 4 993 5 1060 5 1240 7 1770 1380 14 1560 13 1730 16 1850 16 2080 17 2550 1700 23 1970 22 2530 28 2630 26 2910 27 2910 240 24 3950 24 4130 25<	1984	4360	58	4860	58	5140	58	5440	58	5880	58	0209	58	0269	57	7480	57	7510	51
5740 61 6430 61 6620 60 6860 61 7210 61 7760 4790 59 5230 59 6190 60 6690 61 6830 60 7000 60 7410 1980 30 2290 30 2810 28 2960 28 3070 25 3290 842 5 855 4 885 4 993 5 1060 5 1240 7 1770 1380 14 1560 13 1730 16 1850 16 2080 16 2500 17 2550 1700 23 1970 22 2530 28 2630 26 2860 26 2910 24 2930 3770 54 4130 52 4640 53 5060 53 5720 35 6470	1985	2880	44	2970	40	3110	38	3180	35	3510	36	3930	37	4810	45	0069	54	8130	55
5740 61 6310 61 6430 61 6620 60 6860 61 7210 61 7760 4790 59 5230 59 6190 60 6690 61 6830 60 7000 60 7410 1980 30 2290 30 2810 28 2960 28 3070 25 3290 842 5 855 4 885 4 993 5 1060 5 1240 7 1770 1380 14 1560 13 1730 16 1850 16 2080 16 2500 17 2550 1700 23 1970 22 2530 28 2630 26 2860 26 2910 24 2930 3770 54 4130 52 4640 53 5700 55 6470																			
4790 59 5230 59 6190 60 6690 61 6830 60 7000 60 7410 1980 30 2290 30 2810 28 2960 28 3070 25 3290 842 5 855 4 885 4 993 5 1060 5 1240 7 1770 1380 14 1560 13 1730 16 1850 16 2080 16 2500 17 2550 1700 23 1970 22 2530 28 2630 26 2860 26 2910 24 2930 3770 54 3950 54 4130 52 4640 53 5060 55 6470	1986	5740	61	6310	61	6430	[9]	6620	99	0989	61	7210	61	1760	. 19	7940	59	10500	09
1980 30 2290 30 2590 30 2810 28 2960 28 3070 25 3290 842 5 855 4 885 4 993 5 1060 5 1240 7 1770 1380 14 1560 13 1730 16 1850 16 2080 16 2500 17 2550 1700 23 1970 22 2530 28 2630 26 2860 26 2910 24 2930 3770 54 3950 54 4130 52 4640 53 5060 55 6470	1987	4790	59	5230	59	6190	09	0699	61	6830	09	7000	09	7410	09	7990	09	11000	61
842 5 855 4 885 4 993 5 1060 5 1240 7 1770 1380 14 1560 13 1730 16 1850 16 2080 16 2550 17 2550 1700 23 1970 22 2530 28 2630 26 2860 26 2910 24 2930 3770 54 3950 54 4130 52 4640 53 5060 53 5720 55 6470	1988	1980	30	2290	30	2590	30	2810	28	2960	28	3070	25	3290	27	3570	27	3710	24
1380 14 1560 13 1730 16 1850 16 2080 16 2500 17 2550 1700 23 1970 22 2530 28 2630 26 2860 26 2910 24 2930 3770 54 3950 54 4130 52 4640 53 5060 53 5720 55 6470	1989	842	2	855	4	885	4	993	5	1060	2	1240	7	1770	6	2050	11	2620	13
1700 23 1970 22 2530 28 2630 26 2860 26 2910 24 2930 3770 54 3950 54 4130 52 4640 53 5060 53 5720 55 6470	1990	1380	14	1560	13	1730	16	1850	16	2080	16	2500	17	2550	16	2780	16	3300	19
1700 23 1970 22 2530 28 2630 26 2860 26 2910 24 2930 3770 54 3950 54 4130 52 4640 53 5060 53 5720 55 6470							,												
3770 54 3950 54 4130 52 4640 53 5060 53 5720 55 6470	1661	1700	23	1970	22	2530	28	2630	26	2860	26	2910	24	2930	22	3110	23	3730	25
0100 36 0220 00 0250 00 0000 11 0000	1992	3770	54	3950	54	4130	52	4640	53	2060	53	5720	55	6470	99	0569	55	0692	52
2440 34 2890 38 3140 40 3320 39 3110 39 3770 33 3810	1993	2440	34	2890	38	3140	40	3520	39	3710	39	3770	35	3810	33	4010	33	4270	31

Table 5b.--Lowest mean discharge, in cubic feet per second, and ranking for the indicated number of consecutive days in year ending March 31, Minnesota

뇓		37	23	:1	38	83	70	88	63	59	99		16	32	ž.	49	71		62	89	46	53	50
/s Rank		(4)	4)	43	(T)	æ	(~	<i>S</i> O	Ŷ	5	9		-	κŋ	7	4	7		7	9	4	5	νΩ
183 days	2750	4370	5640	4060	4410	10500	7080	12200	6200	2860	6910		2880	4160	3500	5000	7130		0906	7020	4740	5320	2000
Rank	10	42	27	32	43	40	54	85	53	55	72		14	28	26	44	<i>L</i> 9		8	65	37	69	47
120 days	2010	3930	3100	3220	3960	3860	4340	9150	4330	4460	0819		2280	3100	3000	4010	5240		7550	5160	3740	5520	4130
Rank	7	46	23	32	27	43	35	88	47	54	7.1		15	31	28	42	62		8	<i>L</i> 9	39	64	44
90 days	1660	3800	2670	2970	2780	3610	3150	8580	3820	3930	5360		2090	2880	2780	3570	4530		6530	4760	3370	4610	3670
Rank	9	4	19	35	24	38	33	91	53	47	69		16	32	78	46	63		81	89	43	59	49
60 days	1440	3360	2250	2950	2530	3140	2790	8290	3590	3510	4870		2010	2750	2580	3500	4120		0809	4580	3280	3910	3530
Rank	-	47	21	40	24	35	32	91	55	99	70	•	16	34	73	48	65		84	69	4	49	51
30 days	1300	3230	2200	2950	2270	2760	2510	8080	3500	3500	4650		0961	2700	2380	3330	4000		9165	4490	3100	3340	3460
Rank	7	50	27	45	28	39	33	91	59	09	74		61	38	30	52	45		85	70	4]	48	55
14 days	1270	3200	2200	2950	2240	2730	2510	8050	3500	3500	4650		1960	2700	2350	3300	3860		5900	4340	2790	3160	3390
Rank	7	54	29	20	28	4	36	92	19	62	75	,	20	43	31	57	<i>L</i> 9		98	70	38	52	55
7 days	1250	3150	2200	2950	2190	2730	2510	8050	3500	3500	4650		1960	2700	2350	3300	3860		2900	4190	2540	3120	3210
Rank	∞	46	32	55	28	49	4	94	65	99	80	• • • •	25	48	36	62	70		87	69	40	58	56
3 days	1220	2520	2200	2950	2070	2730	2510	8050	3500	3500	4650		1960	2700	2350	3300	3860		5900	3850	2430	3020	2970
Rank	7	42	38	19	31	52	49	94	19	89	84		29	51	43	65	72		88	71	46	09	57
l day	1060	2280	2200	2950	2000	2730	2500	8050	3500	3500	4650		1960	2700	2350	3280	3860		5900	3800	2400	2920	2900
Year	1895	1897	1901	1902	1903	1904	1905	 1907	1908	1909	1910		1161	1912	1913	1914	1915	•	9161	1917	8161	1919	1920

Table 5b.--Lowest mean discharge, in cubic feet per second, and ranking for the indicated number of consecutive days in year ending March 31, Minnesota--Continued

Rank	56	29	21	15	26	12	41	36	49	24	13	6	S	4		7	2	∞	43	9	61	73	74
183 days	5570	3650	3310	2830	3500	2770	4590	4330	6410	3490	2790	2280	1680	1590	1250	2130	1290	2260	4690	1970	3190	7360	7630
Rank	58	29	23	16	12	11	24	34	52	81	15	7	9	5	-	∞	2	6	41	4	21	89	70
120 days	4540	3130	2860	2420	2170	2080	2910	3480	4250	2650	2380	0961	1700	1580	1140	1990	1270	2000	3900	1540	2810	5380	2990
Rank	50	34	24	18	∞	3	25	29	51	12	17	10	9	5	_	13	2	=	45	4	19	70	72
90 days	3880	3020	2670	2310	1800	1840	2670	2840	3900	1940	2260	1860	1620	1500	1050	1940	1250	1930	3770	1380	2400	9090	5560
Rank	52	34	26	18	6	10	27	30	51	13	17	=	7	5	-	12	7	15	57	4	20	70	9/
60 days	3560	2880	2570	2220	1650	1730	2570	2630	3550	1840	2170	1740	1520	1420	927	1810	1220	1910	3800	1280	2300	4940	5540
Rank	57	36	30	20	10	12	28	33	52	14	8	6	∞	5		=	7	15	58	4	17	99	79
30 days	3500	2810	2420	2110	1620	1670	2370	2580	3470	1810	2060	1570	1420	1250	857	1630	1100	1860	3590	1180	2030	4420	5330
Rank	99	37	29	21	10	11	26	34	57	14	20	6	∞	5	-	12	2	17	58	4	18	99	81
14 days	3400	2670	2290	2020	1530	1570	2150	2510	3400	1750	1960	1440	1370	1180	807	1580	847	1840	3440	1120	1840	4110	5140
Rank	36	40	27	21	10	 =======================================	24	32	58	14	61	∞	6	9		12	7	18	48	4	17	89	77
7 days	3210	2620	2160	1980	1410	1500	2010	2350	3320	1670	1910	1290	1350	1130	741	1560	787	1760	2940	1080	1740	3890	4730
Rank	59	45	29	24	10	11	26	31	54	91	21	7	6	9		12	7	19	47	4	15	19	79
3 days	3050	2520	2070	1930	1310	1480	1970	2190	2920	1620	1840	1120	1280	1070	705	1480	720	1670	2650	1060	1500	3210	4640
Rank	58	47	32	25	6	17	24	36	55	20	23	∞	=	4	-	12	7	4	4	5	13	59	82
1 day	2900	2450	2050	1850	1130	1450	1820	2140	2820	1600	1760	1090	1240	1020	632	1280	899	1360	2370	1020	1330	2900	4440
Year	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940	1941	1942	1943

Table 5b.--Lowest mean discharge, in cubic feet per second, and ranking for the indicated number of consecutive days in year ending March 31, Minnesota--Continued

Rank	69	<i>L</i> 9		09	78	44	28	40	51	87	52	72	55	30	22	75	01	33	20	8.	54	27	42
183 days	7050	0569		0209	8500	4710	3640	4560	5110	11400	5270	7220	5480	3730	3430	7910	2670	4270	3240	2920	5400	3630	4640
Rank	75	74		62	79	99	35	49	09	06	49	77	59	 33	30	73	13	45	 20	22	51	31	39
120 days	6540	6370		4700	02.29	4470	3520	4200	4620	9840	4880	6640	4590	3340	3130	6340	2260	4010	2730	2850	4210	3220	3850
Rank	82	77		59	78	57	40	55	63	68	65	79	58	 36	30	75	14	52	70	22	48	33	49
90 days	6540	2900		4410	6150	4220	3410	4020	4540	8630	4730	6400	4360	3210	2840	5830	2030	3920	2540	2650	3830	3010	3830
Rank	83	78		2	79	61	40	09	65	68	99	82	62	37	59	72	14	45	21	25	20	36	55
60 days	6290	5610		4170	5750	3970	3230	3920	4340	8000	4540	. 6250	4080	3020	2610	2090	1860	3370	2340	2530	3540	3000	3760
Rank	83	11		62	74	09	45	61	 42	68	89	85	63	 41	31	7.1	13	38	 22	23	53	39	42
30 days	5770	5150		3930	4990	3730	3190	3860	3980	7550	4450	6020	3950	2970	2470	4670	1750	2870	2210	2240	3480	2900	2990
Rank	83	92		63	72	61	43	62	46	96	19	84	65	4	31	69	13	32	24	15	54	42	35
14 days	5380	4800		3710	4560	3660	2880	3680	3200	7250	4290	5750	3900	2950	2390	4310	1730	2430	2090	1820	3370	2870	2590
Rank	83	78		9	73	49	41	59	39	06	09	84	99	42	33	69	15	30	25	16	47	45	34
7 days	2190	4750		3590	4380	3550	2620	3370	2550	7150	3370	5550	3790	2640	2370	4150	1700	2320	2020	1720	2870	2810	2440
Rank	84	77		2	74	63	41	09	27	06	53	83	<i>L</i> 9	33	. 37	72		30	23	17	38	43	35
3 days	4810	4500		3440	4220	3340	2440	3080	1990	7090	2900	4790	3620	2260	2350	4100	1660	2150	1890	1650	2360	2470	2320
Rank	85	78		62	75	63	39	54	28	06	53	81	2	35	33	73	15	30	 56	19	40	45	37
1 day	4730	4220		3110	4110	3230	2220	2810	1930	6620	2800	4420	3280	2120	2110	4020	1420	1970	1870	1540	2260	2370	2170
Year	1944	1945	_	1946	1947	1948	1949	1950	 1951	1952	1953	1954	1955	 1956	1957	1958	6561	0961	 1961	1962	1963	1964	5961

Table 5b.--Lowest mean discharge, in cubic feet per second, and ranking for the indicated number of consecutive days in year ending March 31, Minnesota--Continued

ays Rank	06 0	0 58	0 14	0 92	0 45	9 0	0 85	0 84	0 82	0 47	0 61	0 3	0 48	0 62	08 0	0 39	92 0	0 91	0 81	98 0	0 93	0 94	
183 days	12400	5810	2800	12700	4730	9629	11000	10500	10200	4810	 0909	1440	4990	6120	9400	4420	8040	12600	9440	11300	 15300	17600	_
Rank	94	99	19	84	57	50	82	87	80	61	71	3	46	63	83	38	92	98	88	68	16	93	
120 days	11800	5230	2660	8550	4530	4200	7610	9490	7300	4680	2990	1400	4090	4820	8140	 3790	0299	9460	9530	9840	 00901	11500	
Rank	94	69	21	84	09	37	89	87	80	61	74	m	99	99	83	41	73	85	06	98	16	92	
90 days	10300	5020	2560	2680	4420	3230	4940	8020	6530	4450	 5820	1330	4060	4730	0669	 3420	5790	09//	0068	7830	 10000	10300	
Rank	06	7.1	23	98	28	22	99	88	85	48	75	3	41	<i>L</i> 9	84	39	74	80	87	11	93	94	
60 days	8110	4940	2460	7280	3900	 2370	3800	7930	0659	3520	5510	1220	3250	4560	6360	3150	5430	6010	7840	5550	9320	9360	
Rank	87	72	26	82	50	19	59	88	8	43	80	33	25	<i>L</i> 9	98	37	78	73	96	75	93	94	
30 days	6330	4910	2350	2680	3370	2110	3620	7440	2650	3030	5420	1140	2280	4430	6170	 2820	5180	4930	7570	5100	8630	8720	
Rank	87	89	25	79	46	22	51	88	75	40	82	3	91	71	98	36	80	73	68	11	93	94	
14 days	6270	4300	2150	2000	3040	2040	3230	0689	4700	2760	 5300	1040	1820	4390	2980	2640	2090	4610	0869	4810	 8310	8640	
Rank	87	63	22	08	46	56	53	88	72	35	81	ε	13	71	85	37	82	74	68	9/	94	93	
7 days	5930	3530	0661	4870	2870	2030	3150	0299	4280	2470	4950	993	1600	4230	2890	2530	5020	4500	6840	4660	8270	8170	
Rank	78	52	13	82	51	22	57	88	71	39	73	3	14	89	98	34	85	75	68	92	93	16	
3 days	4590	2850	1480	4780	2810	1880	2980	5940	3970	2380	4170	953	1500	3660	5650	2310	4830	4250	0859	4370	 7840	7190	
Rank	74	41	10	83	50	22	99	87	70	91	69	3	<u>8</u>	99	98	27	80	9/	68	11	93	16	
1 day	4070	2280	1220	4600	2650	1690	2880	2680	3780	1450	3760	723	1480	3430	5040	 1920	4370	4120	6120	4220	 7140	6840	
Year	1966	1961	8961	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	6261	1980	1981	1982	1983	1984	1985	9861	1987	

Table 5b.--Lowest mean discharge, in cubic feet per second, and ranking for the indicated number of consecutive days in year ending March 31, Minnesota--Continued

Rank 120 days Rank 183 days Rank	2900 17	3480 23	4300 34	12300 89	8430 77
Rank	17	25	 36	92	78
120 days	2430	2960	3570	11200	6770
Rank	16	26	38	93	9/
90 days	2160	2720	3330	10300	2900
Rank	∞	31	42	92	73
60 days Rank	1560	2680	3280	9130	5350
Rank	9	27	46	92	9/
30 days Rank	1290	2370	3190	8270	5140
Rank	9	23	47	92	78
Rank 14 days	1190	2090	3140	8110	4950
Rank	5	23	49	91	19
7 days	1100	2000	2950	7870	4810
Rank	S	20	42	92	81
3 days	1070	1820	2450	7200	4660
Rank	9	21	35	92	79
l day	1060	1640	2130	6940	4350
Year	6861	0661	 1661	1992	1993

References

- Gunard, K.T., Hess, J.H., Zirbel, J.L., and Cornelius, C.E., 1990, Water resources data-Minnesota water year 1988--Volume 2. Upper Mississippi and Missouri River Basins: U.S. Geological Survey Water-Data Report MN-88-2, 331 p.
- Hutchinson, N. E., compiler, 1975, WATSTORE -National water data storage and retrieval system of the U.S. Geological Survey - Users guide: U.S. Geological Survey Open-File Report 75-426 (revised), 791p.
- Sturrock, A.M., Winter, T.C., and Rosenberry, D.O.. 1992, Energy budget evaporation from Williams Lake, a closed lake in North Central Minnesota: Water Resources Research 28, 1605-17.
- U.S. Army Corps of Engineers, 1990, Mississippi River headwaters lakes in Minnesota--low flow review: U.S. Army Corps of Engineers, St. Paul District, 62 p.
- _____1993, Riverine emergency management modelusers manual and program documentation, version 2.0: U.S. Army Corps of Engineers, St. Paul District, 25 p.
- U.S. Geological Survey, 1977, Water resources data for Minnesota, water year 1976: U.S. Geological Survey, 896 p.
- _____1981, Water resources data-Minnesota water year 1980—volume 2. Upper Mississippi and Missouri River Basins: U.S. Geological Survey Water-Data Report MN-80-2, 435 p.

Appendix A

Procedures used for Estimating Ungaged Discharges

Subreach 1

Leech Lake River.—Streamflow at the mouth of Leech Lake River (fig. 1) was estimated on the basis of records of pool elevations for Mud Lake Reservoir located near the mouth of Leech Lake River. Discharge was calculated by applying pool elevations to a weirflow equation (Mark Rodney, U.S. Army Corps of Engineers, oral commun., 1994).

Ball Club River, White Oak Lake Outlet, Vermillion River, and Leighton Brook.--No discharge measurements were made in these streams during 1988. Discharge for these streams was estimated on the basis of the gain in flow of Leech Lake River between Federal Dam and Mud Lake Dam (157 square mile (mi²) drainage area). The average daily gain in flow during July 1988 (20.0 ft³/s) was equivalent to 0.13 ft³/mi². The computed ft³/mi² rate compares favorably with a ft³/mi² rate of 0.13 computed from the July 6, 1988 discharge measured in Willow River near Hill City, Minnesota, a nearby stream that has a drainage area of 160 mi². The combined drainage area of Ball Club River, White Oak Lake Outlet, Vermillion River, and Leighton Brook (608 mi²) was multiplied by 0.13 ft³/mi² to obtain an estimate of their combined discharge (79.0 ft³/s).

Minnesota Power Clay Boswell Plant.—The power plant withdrew an average of 17.2 ft³/s during July 1988 (U.S. Army Corps of Engineers, 1990).

Blandin Paper and Wood Products Plants.--The combined net withdrawal of these two plants was 19.2 ft³/s during July 1988 (U.S. Army Corps of Engineers, 1990)

Subreach 2

Grand Rapids, Minnesota municipal wastewater. The average discharge (17.8 ft³/s) reported for the Grand Rapids wastewater treatment facility during the latter half of July 1988 (U.S. Army Corps of Engineers, 1990) was used for all of July 1988.

<u>Prairie River.</u>--Discharge at the mouth of Prairie River was estimated on the basis of three discharge measurements of the Prairie River near Taconite, Minnesota made on June 1, July 1, and July 28, 1988. The daily ft³/mi² rates for Prairie River near Taconite,

Minnesota (331 mi² drainage area) were multiplied by the drainage area at the mouth of Prairie River (491 mi²) to obtain daily discharges for Prairie River at the mouth.

Split Hand Creek.--Discharge at the mouth of Split Hand Creek was estimated by multiplying the drainage area at the mouth (52.6 mi²) by the daily ft³/mi² rate for the Swan River near Warba, Minnesota. The mean discharge for the month of July (3.8 ft³/s) obtained using this method compares favorably with a flow estimate of 5 ft³/s made by a USGS hydrographer during July 1988 (William A. Gothard, U.S. Geological Survey, oral commun., 1994).

Swan River.-Discharge at the mouth of Swan River was estimated on the basis of two discharge measurements made at Swan River near Warba, Minnesota on July 1, and July 26, 1988. The daily ft³/mi² rates for Swan River near Warba, Minnesota (238 mi² drainage area) were multiplied by the drainage area for Swan River at the mouth (317 mi²) to obtain daily discharges for Swan River at the mouth.

Pokegama Creek.—Discharge at the mouth of Pokegama Creek was estimated by multiplying the drainage area at the mouth (21.8 mi²) by the daily ft³/mi² rate for Swan River near Warba, Minnesota.

<u>Unnamed tributaries.</u>--Discharge for unnamed tributaries in the Mississippi River subreach extending from Grand Rapids to near Libby, Minnesota were estimated by multiplying the ft³/mi² rate for Swan River near Warba, Minnesota by the drainage areas of the ungaged tributaries (63.3 mi² total). Tributaries in this subreach that had drainage areas of less than 2.0 mi² were assumed to have zero flow during July 1988.

Subreach 3

Willow River (includes White Elk Creek).--

Discharge at the mouth of Willow River was estimated on the basis of two discharge measurements made at Willow River near Palisade, Minnesota on July 1, and July 27, 1988. The daily ft³/mi² rates for Willow River near Palisade, Minnesota (525 mi² drainage area) were multiplied by the drainage area of Willow River at the mouth (552 mi²) to obtain daily discharges for Willow River at the mouth.

Rice River.-Discharge at the mouth of Rice River was estimated on the basis of one discharge measurement made at Rice River at Hassman, Minnesota on July 1, 1988. The measurement and corresponding ft³/mi² rate for Rice River was plotted on graphs with measurements and ft³/mi² rates for Ripple,

Prairie, and Little Pine Rivers. A flow recession curve was drawn through the Rice River measurement, based on the shape of the recession curves for Ripple, Swan, Prairie, and Little Pine Rivers. Daily discharges were obtained from the curve.

Sisabagamah Creek.--Discharge at the mouth of Sisabagamah Creek was estimated by multiplying the drainage area at the mouth (48.4 mi²) by the ft³/mi² rate for Ripple River at Aitkin, Minnesota.

Ripple River.—Discharge at the mouth of Ripple River was estimated on the basis of two discharge measurements made on June 2, and July 6, 1988 at Ripple River at Aitkin, Minnesota.

<u>Unnamed tributaries.</u>--Discharge for unnamed tributaries in the Mississippi River subreach extending from near Libby to Aitkin was estimated by averaging the daily ft³/mi² rates for Rice River at Hassman, Minnesota and Ripple River at Aitkin, Minnesota and multiplying the results by the combined drainage areas (15.4 mi²) of the unnamed tributaries. Tributaries in this subreach that had drainage areas of less than 2.0 mi² were assumed to have zero flow during July 1988.

Subreach 4

Aitkin, Minnesota municipal wastewater discharge.—The daily discharge (0.5 ft³/s) reported for the latter part of July 1988 (U.S. Army Corps of Engineers, 1990) was used for all of July.

Little Willow River.—Discharge at the mouth of Little Willow River was estimated by multiplying the drainage area (85.3 mi²) of Little Willow River at the mouth by the daily ft³/mi² rates for Little Pine River near Cross Lake, Minnesota.

Creek was estimated by multiplying the drainage area (41.0 mi²) of Cedar Creek at the mouth by the daily ft³/mi² rates for Little Pine River near Cross Lake, Minnesota.

<u>Dean Brook.</u>--Discharge at the mouth of Dean Brook was estimated by multiplying the drainage area (28.8 mi²) of Dean Brook at its mouth by the daily ft³/mi² rates for Little Pine River near Cross Lake, Minnesota.

<u>Little Pine River.</u>--Little Pine River is a tributary to Pine River, which is a tributary to the Mississippi River. Discharge at the mouth of Little Pine River was estimated on the basis of two discharge measurements made at Little Pine River near Cross Lake, Minnesota on June 2, and July 6, 1988. The daily ft³/mi² rates for Little Pine River near Cross Lake, Minnesota (132 mi² drainage area) were multiplied by the drainage area of Little Pine River at the mouth (142 mi²) to obtain daily discharges for Little Pine River at the mouth.

Pine River.--Discharge at the mouth Pine River was estimated by adding daily discharge values computed by the U.S. Army Corps of Engineers for the Pine River at Cross Lake Dam to estimates of flow to Pine River from Little Pine River, Pelican Brook, and the watershed of Pine River between Cross Lake Dam and the mouth of Pine River. Estimates of flow contributions of Little Pine River (205 mi² drainage area), Pelican Brook (51.9 mi² drainage area), and Pine River watershed (41.3 mi² drainage area) were computed by multiplying their drainage areas by the daily ft³/mi² rates for the Little Pine River near Cross Lake, Minnesota.

Mission Creek.--Discharge at the mouth of Mission Creek was estimated by multiplying the drainage area at the mouth (17.8 mi²) by the daily ft³/mi² rates for Little Pine River near Cross Lake, Minnesota.

Rabbit River.—Discharge at the mouth of Rabbit River (outlet of Rabbit Lake) was estimated by multiplying the drainage area at the mouth (42.6 mi²) by the daily ft³/mi² rates for Little Pine River near Cross Lake, Minnesota.

Sand Creek.--Discharge at the mouth of Sand Creek was estimated by multiplying the drainage area at the mouth (35.0 mi²) by the daily ft³/mi² rates for Little Pine River near Cross Lake, Minnesota.

Whiteley Creek.—Discharge at the mouth of Whitely Creek was estimated by multiplying the drainage area at the mouth (10.0 mi²) by the daily ft³/mi² rates for Little Pine River near Cross Lake, Minnesota.

Unnamed tributaries. -- Discharge for unnamed tributaries in the Mississippi River subreach extending from Aitkin, Minnesota to Brainerd, Minnesota was estimated by multiplying the daily ft³/mi² rates for Little Pine River near Cross Lake, Minnesota by the drainage areas of the ungaged tributaries (42.1 mi² total). Tributaries in this subreach that had drainage areas of less than 8.8 mi² were assumed to have no flow during July 1988, based on two observations of no flow in Rabbit River near Crosby, Minnesota (8.8 mi² drainage area) on June 2, and July 6, 1988.

Subreach 5

Brainerd, Minnesota municipal wastewater and industrial discharges.--The net daily discharge (3.5 ft³/s) resulting from municipal and industrial withdrawals, consumption, and discharge reported for the latter part of July 1988 (U.S. Army Corps of Engineers, 1990) was used for all of July 1988.

Buffalo Creek.--Buffalo Creek was assumed to have no flow on the basis of its drainage area (12 mi²) and evaporation from extensive ponds and marshes along the channel of Buffalo Creek.

<u>Unnamed tributaries.</u>--Unnamed tributaries within the Mississippi River subreach extending from Brainerd to near Ft. Ripley that had drainage areas of less than 8.8 mi² were assumed to have no flow during July 1988, based on two observations of no flow in Rabbit River near Crosby, Minnesota (8.8 mi² drainage area) on June 2, and July 6, 1988. One unnamed tributary (9.3 mi² drainage area) was assumed to have no flow during July 1988, based on its drainage area and evaporation from Tamarack Lake and marshes at its source.

Subreach 6

Nokasippi River.--Discharge at the mouth of Nokasippi River was estimated on the basis of one discharge measurement made on the Nokasippi River below Ft. Ripley on June 24, 1988. The measurement and corresponding ft³/mi² rate were plotted on graphs with measurements and ft³/mi² rates for Prairie, Swan, Ripple, and Little Pine Rivers. A flow recession curve was drawn through the Nokasippi River measurement, based on the shape of the flow recession curves for Prairie, Swan, Ripple, and Little Pine Rivers. Daily discharges were obtained from the curve. Daily ft³/mi² rates for Nokasippi River below Ft. Ripley, Minnesota (192 mi² drainage area) were multiplied by the drainage area at the mouth of the Nokasippi River (222 mi²) to obtain daily discharges at the mouth of the Nokasippi River.

Fletcher Creek.—Discharge for Fletcher Creek (19.2 mi² drainage area) was assumed to be zero during July 1988. The assumption of zero flow was based on an observation of zero flow in Fletcher Creek on September 28, 1976, a previous drought that was less severe than the drought of 1988 (based on discharge records for Sauk River near St. Cloud, Minnesota and Elk River near Big Lake, Minnesota).

<u>Little Elk River.</u>--Discharge at the mouth of Little Elk River (152 mi² drainage area) was assumed to be

zero during July 1988. The assumption of zero flow was based on an observation of zero flow in Little Elk River near Little Falls, Minnesota on September 28, 1976, a previous drought that was less severe than the drought of 1988 (based on discharge records for Sauk River near St. Cloud, Minnesota and Elk River near Big Lake, Minnesota).

Pike Creek.--Discharge at the mouth of Pike Creek (39.0 mi² drainage area) was assumed to be zero during July 1988. The assumption of zero flow was based on an observation of zero flow in an adjacent basin, Little Elk River near Little Falls, Minnesota on September 28, 1976, a previous drought that was less severe than the drought of 1988 (based on discharge records for Sauk River near St. Cloud and Elk River near Big Lake). The assumption of zero flow also was based on an observation of zero flow on July 12, 1988 in Spunk Creek near Royalton, Minnesota (83.6 mi² drainage area), a nearby basin.

Little Falls, Minnesota municipal wastewater and industrial discharges.—The net daily discharge (0.6 ft³/s) resulting from municipal and industrial withdrawals, consumption, and discharge reported for the latter part of July 1988 (U.S. Army Corps of Engineers, 1990) was used for all of July 1988.

Swan River (tributary to Mississippi River near Little Falls, Minnesota). -- Discharge at the mouth of Swan River (164 mi² drainage area) was estimated using comparisons with flows in Nokasippi River, a nearby basin that has a similar drainage area. No discharge measurements were made in Swan River during 1988, but a discharge measurement was made on September 30, 1976 during a previous drought. During the 1976 drought, the ft³/mi² rate in Swan River was about 50 percent of the ft³/mi² rate for Nokasippi River, based on a discharge measurement made in the Nokasippi River on September 3, 1976. Discharge in Swan River during July 1988 was estimated by multiplying the daily ft³/mi² rates for Nokasippi River during July by 0.5. The resulting daily ft³/mi² values were then multiplied by the drainage area of Swan River at the mouth to obtain daily discharges for Swan River at the mouth.

Hay Creek.—The discharge at the mouth of Hay Creek (14.8 mi² drainage area) was assumed to be zero during July 1988 based on an observation of zero flow in Spunk Creek near Royalton, Minnesota on July 12, 1988, a nearby basin that has a larger drainage area (83.6 mi²).

Little Two River.-Discharge at the mouth of Little Two River (23.0 mi² drainage area) was assumed to be zero during July 1988 based on an observation of zero flow on July 12, 1988 in Spunk Creek near Royalton, Minnesota, a nearby stream that has a larger drainage area

Two River.--Discharge at the mouth of Two River (158 mi² drainage area) was assumed to be zero during July 1988 based on a measurement of 0.27 ft³/s in Two River near Bowlus, Minnesota on September 30, 1976, a previous drought that was less severe than the drought of 1988 (based on discharge records for Sauk River near St. Cloud and Elk River near Big Lake, Minnesota).

Hazel Creek.--Discharge at the mouth of Hazel Creek (3.1 mi² drainage area) was assumed to be zero during July 1988 based on an observation of zero flow in Spunk Creek near Royalton, Minnesota on July 12, 1988, an adjacent basin that has a larger drainage area (83.6 mi²).

Spunk Creek.—Discharge at the mouth of Spunk Creek (83.6 mi² drainage area) was assumed to be zero during July 1988 based on an observation of zero flow in Spunk Creek near Royalton, Minnesota on July 12, 1988.

Platte River.--No discharge measurements were made at the mouth of Platte River during 1988, but several discharge measurements were made in Platte River and its tributaries upstream of the mouth. A discharge of 0.06 ft³/s was measured in Platte River near Harding, Minnesota (101 mi² drainage area) on June 23, 1988. A discharge of 0.07 ft³/s was measured in Big Mink Creek near Pierz, Minnesota (18.6 mi² drainage area) on June 23, 1988. Little Mink Creek near Pierz, Minnesota (18.8 mi² drainage area) was observed to have zero flow on June 23, 1988. A discharge of 3.72 ft³/s was measured in Skunk River near Pierz, Minnesota on June 23, 1988. Water in these streams flows into Rice Lake, a 1.1 mi² reservoir located 16.4 river miles upstream from the mouth of Platte River. Evaporation from the surface of Rice Lake was estimated from evaporation rates for July 1988 determined at Williams Lake near Akeley, Minnesota (4.4 ft³/s/mi²) and at Becker, Minnesota (6.0 ft³/s/mi²). Comparison of the measured inflows to Rice Lake (3.85) ft³/s) with the estimated evaporation from its surface (4.8-6.6 ft³/s) suggested that evaporation losses exceeded inflow and that there was no flow out of Rice Lake during July 1988. The estimated evaporative loss during July 1988 is similar in magnitude to a calculated loss of 4.75 ft³/s that was determined from

measurements of Rice Lake inflows (8.02 ft³/s) and outflow (3.27 ft³/s) made on September 28-29, 1976. Discharge at the mouth of Platte River was assumed to be zero based on data from September 1976 and June 1988.

Stoney Creek.--Discharge at the mouth of Stoney Creek (17.2 mi² drainage area) was assumed to be zero during July 1988 based on an observation of zero flow in Spunk Creek near Royalton, Minnesota on July 12, 1988, an adjacent basin that has a larger drainage area (83.6 mi²).

Little Rock Creek.--Discharge at the mouth of Little Rock Creek was estimated on the basis of one discharge measurement made in Little Rock Creek at Rice, Minnesota and estimated evaporation from Little Rock Lake. The discharge in Little Rock Creek at Rice, Minnesota (73.4 mi² drainage area) was 12.9 ft³/s on May 4, 1988. Little Rock Creek flows into Little Rock Lake about two miles downstream of Rice, Minnesota. Based on flow recessions observed in tributaries to the Upper Mississippi River during 1988, it was assumed that the flow of 12.9 ft³/s measured in Little Rock Creek at Rice, Minnesota during May 1988 would have decreased substantially by July 1988. Discharge in a nearby stream, Watab River near Sartell, Minnesota (90.1 mi² drainage area), for example, declined from $17.0 \text{ ft}^3/\text{s}$ on May 4, 1988 to 0.19 ft³/s on July 12, 1988. Evaporation from Little Rock Lake and Little Rock Creek flowage, which extends to the Mississippi River, was estimated to be 13.7 ft³/s. The discharge at the mouth of Little Rock Creek was assumed to be zero based on the estimated flow into Little Rock Lake and the estimated evaporative loss from Little Rock Creek.

Champion International Paper Mill at Sartell. Minnesota.--The daily consumptive use of 0.9 ft³/s reported for the latter part of July 1988 (U.S. Army Corps of Engineers, 1990) was used for all of July.

Watab River.--Discharge at the mouth of Watab River was estimated based on two discharge measurements made on May 4, and July 12, 1988 in Watab River near Sartell, Minnesota. Based on the measured discharge of 0.19 ft³/s for Watab River near Sartell, Minnesota on July 12, 1988, the flow contribution of Watab River to the Mississippi River during July 1988 was determined to be insignificant and was assumed to be zero for the purposes of this study.

<u>Sauk River.</u>--Discharge at the mouth of Sauk River was estimated on the basis of three discharge measurements made on May 4, June 30, and July 12, 1988 in Sauk River near St. Cloud, Minnesota. The

measurements were plotted and a flow-recession curve was drawn through the plotted points. Daily discharges obtained from the curve were used for estimates of discharge at the mouth of the Sauk River.

St. Cloud, Minnesota municipal withdrawals and wastewater discharge.—The net daily consumption (3.1 ft³/s) reported for the latter part of July 1988 (U.S. Army Corps of Engineers, 1990) was used for all of July.

Johnson Creek.-Discharge at the mouth of Johnson Creek (46.7 mi² drainage area) was estimated on the basis of one discharge measurement made in Johnson Creek near St. Augusta, Minnesota on July 6, 1988. The measurement was plotted along with measurements for Plum Creek, an adjacent basin. A flow recession curve was drawn through the Johnson Creek measurement based on the shape of the flow recession curve for Plum Creek. Daily discharges were obtained from the Johnson Creek flow-recession curve.

Plum Creek.--Discharge at the mouth of Plum Creek (23.3 mi² drainage area) was estimated on the basis of two discharge measurements made on May 6, and July 5, 1988 in Plum Creek near Clearwater, Minnesota. The measurements were plotted and a smooth flow recession curve was drawn through the plotted points. Daily discharges were obtained from the curve.

Clearwater River.-Discharge at the mouth of Clearwater River (175 mi² drainage area) was estimated on the basis of two discharge measurements made on May 5, and July 5, 1988 in the Clearwater River above Clearwater, Minnesota. The measurements were plotted and a smooth flow recession curve was drawn through the plotted points. Daily discharges were obtained from the curve.

Fish Creek. -- Discharge at the mouth of Fish Creek (10.0 mi² drainage area) was assumed to be zero during July 1988 based on an observation of zero flow on July 5, 1988 in Silver Creek near Hasty, Minnesota, an adjacent basin that has a larger drainage area.

<u>Silver Creek.</u>--Discharge at the mouth of Silver Creek (31.0 mi² drainage area) was assumed to be zero during July 1988 based on an observation of zero flow on July 5, 1988 in Silver Creek near Hasty, Minnesota (30.9 mi² drainage area).

Northern States Power industrial withdrawals.— The consumptive use (48 ft³/s) reported for the Sherco and Monticello plants (U.S. Army Corps of Engineers, 1990) was used for all of July 1988.

Elk River.--Discharge at the mouth of Elk River was estimated on the basis of two discharge measurements made on June 30, and July 12, 1988 by the USGS and two discharge measurements made by the MDNR (Dana Dostert, Minnesota Department of Natural Resources, written communication, 1994) on June 18, and July 8, 1988 in Elk River near Big Lake, Minnesota. The discharge measurements were plotted with corresponding daily discharges for an adjacent basin, the Rum River near St. Francis, Minnesota, a continuous-record gaging station operated by the USGS. A line of best fit was drawn through the plotted points and an equation was developed from the line in order to relate discharge in Elk River to discharge in Rum River. Daily discharges for Elk River during July 1988 were obtained by applying the July 1988 daily discharges for Rum River to the equation. The daily discharge values obtained in this manner were then adjusted for evaporation in Orono Lake (0.5 mi² surface area) located near the Elk River mouth. The calculated evaporation rate for Orono Lake was 3.0 ft³/s, based on the evaporation rate determined at Becker, Minnesota.

Elk River, Minnesota municipal wastewater discharge.—The average discharge was 0.7 ft³/s during July 1988 (U.S. Army Corps of Engineers, 1990).

<u>Crow River.</u>--Discharge at the mouth of Crow River was estimated on the basis of daily discharge records for the USGS gaging station, Crow River at Rockford, Minnesota. Daily ft³/mi² rates were computed for the Crow River at Rockford, Minnesota (2,660 mi² drainage area). The daily ft³/mi² values were multiplied by the drainage area of Crow River at the mouth (2,750mi²) to obtain daily discharges for Crow River at the mouth.

Rum River.—Discharge at the mouth of Rum River was estimated on the basis of daily discharge records for the USGS gaging station, Rum River near St. Francis, Minnesota. Daily ft³/mi² rates were computed for Rum River near St. Francis, Minnesota (1,360 mi² drainage area). The daily ft³/mi² rates were multiplied by the drainage area of the Rum River at the mouth (1,580 mi²) to obtain daily discharges for Rum River at the mouth.

Metropolitan Waste Control Commission wastewater discharge, Anoka, Minnesota. -- The average discharge was 3.5 ft³/s during July 1988 (U.S. Army Corps of Engineers, 1990).

Elm Creek.—Discharge at the mouth of Elm Creek was estimated on the basis of daily discharge records for the USGS gaging station, Elm Creek near Champlin, Minnesota. Daily ft³/mi² rates were computed for Elm Creek near Champlin (84.9 mi² drainage area). The

daily ft³/mi² rates were multiplied by the drainage area of Elm Creek at the mouth (103 mi²) to obtain daily discharges for Elm Creek at the mouth. The values obtained by this procedure were then adjusted for evaporation from Hayden Lake and a mill pond in Champlin, Minnesota, which are located downstream of the gaging station. After comparing estimated evaporation (1.2 ft³/s) with the daily discharge estimated for Elm Creek at the mouth, only five days during July 1988 had discharges exceeding the estimated evaporation rate. Flow at Elm Creek mouth, therefore, was considered negligible and zero flow was assumed during July for the purpose of this study.

Coon Creek.--Discharge at the mouth of Coon Creek was estimated on the basis of one discharge measurement made on June 28, 1988 in Coon Creek at Coon Rapids, Minnesota, discharge measurements made during a previous low-flow period during 1980, and daily discharge records for the Rum River near St. Francis, Minnesota, a USGS gaging station in an adjacent basin. The discharge measurements were plotted with corresponding daily discharges from Rum River near St. Francis, Minnesota. A line of best fit was drawn through the plotted points and an equation was developed from the line in order to relate discharge in Coon Creek to discharge in Rum River. Daily discharges for Coon Creek were obtained by applying July 1988 daily discharges from Rum River to the equation.

Appendix B

Table 6.--Tributary discharges, municipal discharges, and industrial withdrawals, in cubic feet per second, Upper Mississippi River, June and July 1988

			Blandin Paper and Blandin					
Date	Leech Lake River	Ungaged tributaries 1	Clay Boswell Power Plant withdrawal	Wood Products withdrawals	Grand Rapids municipal wastewater	Prairie River		
June 28		# T				25		
29			~~			24		
30						23		
July 1	127	79	17	19	18	22		
2	127	79	17	19	18	22		
3	127	79	17	19	18	21		
4	127	79	17	19	18	21		
5	127	79	17	19	18	19		
6	127	7 9	17	19	18	19		
7	127	79	17	19	18	19		
8	127	79	17	19	18	18		
9	127	7 9	17	19	18	18		
10	127	79	17	19	18	18		
11	127	79	17	19	18	18		
12	127	79	17	19	18	18		
13	127	79	17	19	18	16		
14	127	79	17	19	18	16		
15	127	79	17	19	18	16		
16	127	79	17	19	18	16		
17	127	79	17	19	18	16		
18	127	79	17	19	18	15		
19	127	79	17	19	18	15		
20	127	79	17	19	18	15		
21	127	79	17	19	18	15		
22	127	7 9	17	19	18	15		
23	127	7 9	17	19	18	14		
24	127	79	17	19	18	14		
25	127	79	17	19	18	14		
26	127	79	17	19	18	13		
27	127	79	17	19	18	13		
28	127	79	17	19	18	13		
29	127	79	17	19	18	13		
30	127	79	17	19	18	13		
31	127	79	17	19	18	13		

Table 6.--Tributary discharges, municipal discharges, and industrial withdrawals, in cubic feet per second, Upper Mississippi River, June and July 1988--Continued

	a			Unnamed			
Doto	Split Hand Creek	Swap Divar	Pokegama Creek	Sandy Disar	tributaries in	Willow Diva	
Date	****	Swan River		Sandy River	subreach 2	Willow Rive	
June 28			~ ~				
June 29	5.6	33		** ***			
June 30	5.3	32				70	
July 1	5.3	32	2.2	24	6.4	67	
2	5.1	31	2.1	23	6.1	64	
3	5.1	31	2.1	23	6.1	61	
4	4.9	29	2.0	23	5.8	59	
5	4.9	29	2.0	23	5.8	57	
6	4.7	28	1.9	23	5.6	55	
7	4.7	28	1.9	23	5,6	53	
8	4.5	27	1.8	23	5.3	50	
9	4.5	27	1.8	23	5.3	48	
10	4.2	25	1.8	23	5.0	46	
11	4.2	25	1.8	23	5.0	44	
12	4.0	24	1.7	23	4.8	42	
13	4.0	24	1.7	23	4.8	40	
14	4.0	24	1.7	23	4.8	39	
15	3.8	23	1.6	23	4.5	38	
16	3.8	23	1.6	23	4.5	37	
17	3.6	21	1.5	23	4.2	36	
18	3.6	21	1.5	23	4.2	35	
19	3.6	21	1.5	23	4.2	34	
20	3.3	20	1.4	23	4.0	32	
21	3.3	20	1.4	23	4.0	30	
22	3.3	20	1.4	23	4.0	29	
23	3.3	20	1.4	23	4.0	29	
24	3.1	18	1.3	23	3.7	28	
25	3.1	18	1.3	23	3.7	27	
26	3.1	18	1.3	23	3.7	26	
27	2.9	17	1.2	23	3.4	25	
28	2.9	17	1.2	23	3.4	25	
29	2.9	17	1.2	23	3.4	24	
30	2.7	16	1.1	23	3.2	23	
31	2.7	16	1.1	23	3,2	23	

Table 6.--Tributary discharges, municipal discharges, and industrial withdrawals, in cubic feet per second, Upper Mississippi River, June and July 1988--Continued

Date	Rice River	Sisabagamah Creek	Ripple River	Unnamed tributaries in subreach 3	Aitkin municipal waste-water	Little Willov River
June 28						
June 29						
June 30						
July 1	14	1.4	3.6	0.58	0.50	2.5
2	14	1.3	3.5	.58	.50	2.4
3	13	1.3	3.4	.54	.50	2.3
4	13	1.3	3.3	.54	.50	2.3
5	13	1.2	3.2	.53	.50	2.2
6	12	1.2	3.1	.50	.50	2.1
7	12	1.2	3.0	.49	.50	2.1
8	12	1.2	3.0	.49	.50	2.1
9	11	1.1	2.9	.46	.50	2.0
10	11	1.1	2.8	.46	.50	1.9
11	11	1.1	2.8	.46	.50	1.9
12	10	1.0	2.7	.42	.50	1.9
13	10	1.0	2.6	.42	.50	1.8
14	9.9	1.0	2.6	.42	.50	1.8
15	9.8	.96	2.5	.41	.50	1.7
16	9.5	.96	2.5	.40	.50	1.7
17	9.2	.92	2.4	.39	.50	1.7
18	9.0	.92	2.4	.38	.50	1.6
19	8.8	.92	2.4	.37	.50	1.6
20	8.6	.88	2.3	.36	.50	1.6
21	8.4	.88	2.3	.36	.50	1.6
22	8.2	.84	2.2	.35	.50	1.5
23	8.0	.84	2.2	.34	.50	1.5
24	7.8	.84	2.2	.34	.50	1.5
25	7.7	.81	2.1	.33	.50	1.4
26	7.6	.81	2.1	.33	.50	1.4
27	7.5	.77	2.0	.32	.50	1.4
28	7.4	.77	2.0	.31	.50	1.4
29	7.1	.77	2.0	.31	.50	1.4
30	7.0	.77	2.0	.30	.50	1.3
31	6.9	.73	1.9	.29	.50	1.3

Table 6.--Tributary discharges, municipal discharges, and industrial withdrawals, in cubic feet per second, Upper Mississippi River, June and July 1988--Continued

Date	Cedar Creek	Dean Brook	Pine River	Mission Creek	Rabbit River	Sand Creel
June 28						~ -
June 29						
June 30						
July 1	1.2	0.83	37	0.51	1.2	1.0
2	1.1	.81	37	.50	1.2	.98
3	1.1	.79	36	.49	1.2	.95
4	1.1	.76	36	.47	1.1	.93
5	1.1	.74	36	.46	1.1	.90
6	1.0	.72	36	.44	1.1	.88
7	1.0	.72	36	.44	1.1	.88
8	.99	.70	36	.43	1.0	.85
9	.96	.68	36	.41	1.0	.82
10	.93	.65	35	.40	.97	.80
11	.90	.63	35	.39	.94	.77
12	.90	.63	35	.39	.94	.77
13	.87	.61	35	.38	.90	.74
14	.87	.61	35	.38	.90	.74
15	.84	.59	35	.36	.87	.72
16	.80	.57	35	.35	.84	.69
17	.80	.57	35	.35	.84	.69
18	.78	.55	34	.34	.81	.66
19	.78	.55	34	.34	.81	.66
20	.74	.52	34	.32	.77	.64
21	.74	.52	34	.32	.77	.64
22	.71	.50	34	.31	.74	.61
23	.71	.50	34	.31	.74	.61
24	.71	.50	34	.31	.74	.61
25	.68	.48	34	.30	.71	.58
26	.68	.48	34	.30	.71	.58
27	.65	.46	34	.28	.68	.56
28	.65	.46	34	.28	.68	.56
29	.65	.46	34	.28	.68	.56
30	.62	.44	34	.27	.65	.53
31	.62	.44	34	.27	.65	.53

Table 6.--Tributary discharges, municipal discharges, and industrial withdrawals, in cubic feet per second, Upper Mississippi River, June and July 1988--Contineud

Date	Whiteley Creek	Unnamed tributaries in subreach 4	Brainerd municipal wastewater	Crow Wing River	Nokasippi River	Little Falls municipal wastewater	Swan Rive (Mississipp River tributary near Little Falls)
June 28							
June 29							
June 30							
July 1	0.19	0.82	3.5	268	17	0.60	6.0
2	.19	.80	3.5	248	17	.60	6.0
3	.18	.78	3.5	242	16	.60	5.6
4	.18	.76	3.5	248	16	.60	5.6
5	.17	.73	3.5	248	16	.60	5.6
6	.17	.71	3.5	293	16	.60	5.6
7	.17	.71	3.5	238	15	.60	5.1
8	.16	.69	3.5	129	15	.60	5.1
9	.16	.67	3.5	7 9	15	.60	5.1
10	.15	.65	3.5	70	15	.60	5.1
11	.15	.63	3.5	7 9	13	.60	4.7
12	.15	.63	3.5	94	13	.60	4.7
13	.14	.60	3.5	483	13	.60	4.7
14	.14	.60	3.5	387	12	.60	4.3
15	.14	.58	3.5	273	12	.60	4.3
16	.13	.56	3.5	248	12	.60	4.3
17	.13	.56	3.5	248	12	.60	4.3
18	.13	.54	3.5	207	12	.60	4.2
19	.13	.54	3.5	162	12	.60	4.1
20	.12	.52	3.5	129	11	.60	4.0
21	.12	.52	3.5	94	11	.60	3.9
22	.12	.50	3.5	94	11	.60	3.8
23	.12	.50	3.5	95	11	.60	3.8
24	.12	.50	3.5	249	11	.60	3.7
25	.11	.47	3.5	253	10	.60	3.7
26	.11	.47	3.5	249	10	.60	3.6
27	.11	.45	3.5	235	10	.60	3.5
28	.11	.45	3.5	113	9.8	.60	3.5
29	.11	.45	3.5	94	9.7	.60	3.4
30	.10	.43	3.5	94	9.5	.60	3.3
31	.10	.43	3.5	454	9.3	. 6 0	3.3

Table 6.--Tributary discharges, municipal discharges, and industrial withdrawals, in cubic feet per second, Upper Mississippi River, June and July 1988--Continued

Date	Champion International withdrawal	Sauk River	St. Cloud municipal withdrawals	Johnson Creek	Plum Creek	Clearwater River	Northern States Power withdrawals
June 28	- -						
June 29							
June 30			THE TO				
July 1	0.90	6.2	3.1	0.69	0.65	0.51	48
2	.90	5.9	3.1	.68	.65	.49	48
3	.90	5.7	3.1	.68	.64	.47	48
4	.90	5.4	3.1	.67	.64	.45	48
5	.90	5,3	3.1	.66	.63	.42	48
6	.90	5.0	3.1	.65	.63	.41	48
7	.90	4.8	3.1	.65	.62	.39	48
8	.90	4.7	3.1	.65	.62	.38	48
9	.90	4.5	3.1	.65	.62	.37	48
10	.90	4.4	3.1	.64	.61	.35	48
11	.90	4.2	3.1	.64	.61	.34	48
12	.90	4.1	3.1	.64	.60	.33	48
13	.90	4.0	3.1	.64	.60	.32	48
14	.90	3.9	3.1	.63	,60	.31	48
15	.90	3.7	3.1	.63	,60	.29	48
16	.90	3.6	3.1	.62	.59	.28	48
17	.90	3.5	3.1	.62	.59	.27	48
18	.90	3.4	3.1	.62	.58	.26	48
19	.90	3.3	3.1	.61	.58	.26	48
20	.90	3.2	3.1	.61	.58	.25	48
21	.90	3.1	3.1	.60	.57	.24	48
22	.90	3.0	3.1	.60	.57	.23	48
23	.90	2.9	3.1	.60	.56	.23	48
24	.90	2.8	3.1	.60	.56	.22	48
25	.90	2.7	3.1	.60	.56	.21	48
26	.90	2.7	3.1	.59	.56	.21	48
27	.90	2.6	3.1	.59	.56	.20	48
28	.90	2.5	3.1	.58	.56	.20	48
29	.90	2.4	3.1	.58	.56	.18	48
30	.90	2.4	3.1	.58	.55	.19	48
31	.90	2.4	3.1	.58	.55	.18	48

Table 6.--Tributary discharges, municipal discharges, and industrial withdrawals, in cubic feet per second, Upper Mississippi River, June and July 1988--Continued

		Elk River municipal			Anoka municipal	
Date	Elk River	wastewater	Crow River	Rum River	wastewater	Coon Creel
June 28						
June 29						
June 30						
July 1	16	0.70	52	92	3.5	8.6
2	15	.70	50	88	3.5	8.4
3	15	.70	48	87	3.5	8.3
4	14	.70	47	85	3.5	8.1
5	14	.70	43	81	3.5	7.9
6	13	.70	40	78	3.5	7.7
7	12	.70	36	76	3.5	7.5
8	12	.70	35	74	3.5	7.5
9	13	.70	35	77	3.5	7.6
10	14	.70	33	82	3.5	8.0
11	15	.70	31	86	3.5	8.2
12	16	.70	31	92	3.5	8.6
13	18	.70	38	102	3.5	9.2
14	20	.70	37	112	3.5	9.7
15	19	.70	38	107	3.5	9.5
16	20	.70	34	108	3.5	9,5
17	18	.70	32	100	3.5	9.1
18	17	.70	31	96	3.5	8.8
19	17	.70	32	99	3.5	9.0
20	21	.70	41	113	3.5	9.8
21	22	.70	44	117	3.5	10
.22	20	.70	40	108	3.5	9.5
23	18	.70	39	102	3.5	9.2
24	17	.70	33	99	3.5	9.0
25	16	.70	36	92	3.5	8.6
26	14	.70	35	81	3.5	7.9
27	12	.70	31	74	3.5	7.5
28	12	.70	28	73	3.5	7.4
29	11	.70	26	70	3.5	7.2
30	11	.70	24	70	3.5	7.2
31	16	.70 ,	22	93	3.5	8.6

¹ Combined discharge of Ball Club River, White Oak Lake Outlet, Vermillion River, and Leighton Brook.